Hydrodynamic Conditions of the Banda and Northern Arafura Seas in the Northwest Monsoon (Februay2014)

Authors

  • Abdul Basit Pusat Penelitian Laut Dalam-LIPI
  • Hanung Agus Mulyadi Deep Sea Center-LIPI, Jl. Y. Syaranamual, Guru-guru Poka, Ambon, Maluku 97233, Indonesia
  • Pipit Pitriana Deep Sea Center-LIPI, Jl. Y. Syaranamual, Guru-guru Poka, Ambon, Maluku 97233, Indonesia
  • Mutiara Rachmat Putri Research Groups on Oceanography – Bandung Institute of Technology
  • Bernhard Mayer Institute of Oceanography, University of Hamburg
  • Thomas Pohlmann Institute of Oceanography, University of Hamburg

DOI:

https://doi.org/10.14203/mri.v46i1.599

Keywords:

Banda and Northern Arafura Seas, Downwelling, Upwelling, Transition Monsoon I, HAMSOM

Abstract

The physical and hydrodynamic conditions in the Banda and Northern Arafura Seas (BAS) during northwest monsoon (February 2014) were investigated using a three-dimensional baroclinic nonlinear numerical model—the Hamburg Shelf Ocean Model (HAMSOM). This study found that northwesterly winds induced eastward surface currents that transported relatively fresh water from the Flores Sea to the Arafura Sea via the Banda Sea. It was also found that the westerly surface currents carried relatively cold water induced by upwelling along the northern coast of the Lesser Sunda Islands. Furthermore, the simulation results revealed that relatively saline surface water from the Indian Ocean intruding through the Ombai Strait and Timor Passage contributed to the surface water of the Eastern Banda Sea and Aru Basin being more saline than the surrounding water. Part of the surface water sank as a result of downwelling in the Arafura Sea. The BAS had higher salinity than the Makassar Strait at a depth of 75 –300m. The simulation results suggested that the higher salinity was due to the influence of the South Pacific Subtropical Water (SPSW) that entered the Indonesian Seas primarily through the Halmahera Sea.

Downloads

Download data is not yet available.

References

Backhaus, J. O. (1985). A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrographische Zeitschrift, 38(4), 165–187. https://doi.org/10.1007/BF02328975

Basit, A. (2019). Upwelling and Related Processes in the Banda and Northern Arafura Seas. University of Hamburg. Retrieved from https://ediss.sub.uni-hamburg.de/handle/ediss/6182

Basit, A., and Putri, M. R. (2013). Water mass characteristics of Weda Bay, Halmahera Island, North Maluku. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 5(Desember), 365–376.

Egbert, G. D., Bennett, A. F., and Foreman, M. G. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research, 99(C12). https://doi.org/10.1029/94jc01894

Egbert, Gary D., and Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2

Explorer, N. O. (2021). NOAA Ocean Explorer: Education - Multimedia Discovery Missions | Lesson 5 - Chemosynthesis and Hydrothermal Vent Life | Activities: Chemosynthesis vs. Photosynthesis. Retrieved from http://oceanexplorer.noaa.gov/edu/learning/5_chemosynthesis/activities/chemovsphoto.html

Gordon, A. L. (2005). Oceanography of the Indonesian seas and their throughflow. Oceanography, 18(SPL.ISS. 4), 15–27. https://doi.org/10.5670/oceanog.2005.01

Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, R. D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., and Wirasantosa, S. (2010). The Indonesian throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2), 115–128. https://doi.org/10.1016/j.dynatmoce.2009.12.002

Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J. J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E. (2006). Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate, 19(16), 3952–3972. https://doi.org/10.1175/JCLI3827.1

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., and Gandin, L. (1996). The NCEP / NCAR 40-Year Reanalysis Project.

Kaspar, F., Lehner, B., and Döll, P. (2003). A global hydrological model for deriving water availability indicators: Model tuning and validation. Journal of Hydrology, 270(1–2), 105–134. Retrieved from http://dx.doi.org/10.1016/S0022-1694(02)00283-4

Kilpatrick, K. A., Podestá, G., Walsh, S., Williams, E., Halliwell, V., Szczodrak, M., Brown, O. B., Minnett, P. J., and Evans, R. (2015). A decade of sea surface temperature from MODIS. Remote Sensing of Environment, 165, 27–41. https://doi.org/10.1016/j.rse.2015.04.023

Koch-Larrouy, A., Madec, G., Bouruet-Aubertot, P., Gerkema, T., Bessières, L., and Molcard, R. (2007). On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing. Geophysical Research Letters, 34(4). https://doi.org/10.1029/2006GL028405

Kochergin, V. P. (1987). Three-dimensional prognostic models. In N. S. Heaps (Ed.), Three-dimensional Coastal Ocean Models (pp. 201–208). American Geophysical Union (Coastal and Estuarine Science 4) Washington, D.C.

Li, X., Yuan, D., Wang, Z., Li, Y. A. O., Corvianawatie, C., Surinati, D., Sandra, A., Bayhaqi, A., Avianto, P., Kusmanto, E. D. I., Dirhamsyah, D., and Arifin, Z. (2020). Moored observations of transport and variability of halmahera sea currents. Journal of Physical Oceanography, 50(2), 471–488. https://doi.org/10.1175/JPO-D-19-0109.1

Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M., and Röske, F. (2002). The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling, 5(2), 91–127. https://doi.org/10.1016/S1463-5003(02)00015-X

Mayer, B., Damm, P. E., Pohlmann, T., and Rizal, S. (2010). What is driving the ITF? An illumination of the Indonesian throughflow with a numerical nested model system. Dynamics of Atmospheres and Oceans, 50(2), 301–312. https://doi.org/10.1016/j.dynatmoce.2010.03.002

Mulyadi, H. A., and Basit, A. (2019). Dinamika kelimpahan zooplankton di laut Banda dan laut Arafura, Indonesia. In Prosiding Pertemuan Ilmiah Nasional Tahunan XV ISOI 2018.

Pohlmann, T. (1997a). Calculating the annual cycle of the vertical eddy viscosity in the North Sea with a three-dimensional baroclinic shelf sea circulation model. Clinical Nutrition, 16(2), 147–161.

Pohlmann, T. (1997b). Predicting the thermocline in a circulation model of the North Sea - Part I: Model description, calibration and verification. Clinical Nutrition, 16(2), 131–146.

Pohlmann, T. (2006). A meso-scale model of the central and southern North Sea: Consequences of an improved resolution. Continental Shelf Research, 26(19), 2367–2385. https://doi.org/10.1016/j.csr.2006.06.011

Sprintall, J., Gordon, A. L., Koch-Larrouy, A., Lee, T., Potemra, J. T., Pujiana, K., and Wijffels, S. E. (2014). The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience, 7(7), 487–492. https://doi.org/10.1038/ngeo2188

Wirasatriya, A., Susanto, R. D., Kunarso, K., Jalil, A. R., Ramdani, F., and Puryajati, A. D. (2021). Northwest monsoon upwelling within the Indonesian seas. International Journal of Remote Sensing, 42(14), 5437–5458. https://doi.org/10.1080/01431161.2021.1918790

Wyrtki, K. (1961). NAGA Report. Surface Currents in the Southeast Asian Waters, 2, 27.

Downloads

Published

2022-06-15

How to Cite

Basit, A., Mulyadi , H. A., Pitriana , P. ., Putri, M. R., Mayer, B., & Pohlmann, T. (2022). Hydrodynamic Conditions of the Banda and Northern Arafura Seas in the Northwest Monsoon (Februay2014). Marine Research in Indonesia, 46(1). https://doi.org/10.14203/mri.v46i1.599

Issue

Section

Original Research Articles