DIVERSITY AND ABUNDANCE OF CULTURABLE VIBRIONACEAE IN THE REARING TANKS OF THREE DIFFERENT CONSUMER TYPES OF AQUACULTURE COMMODITIES
DOI:
https://doi.org/10.14203/mri.v46i1.582Keywords:
aquaculture, Vibrionaceae, diversity, abundance, bacterial community, , trophic level speciesAbstract
Vibrio spp. bacteria species are heterotrophic and halophilic bacteria, which are commonly found in various habitats such as brackish, marine waters and animals. They are widely used as an indicator of water quality and cultured animal health. This study investigates the diversity and abundance of Vibrionaceae populations in the rearing water of three distinct consumer types of aquaculture commodities, namely abalone, lobster and sea cucumber, during six months sampling. We isolated Vibrionaceae bacteria from the rearing tanks of three different consumer types of aquaculture commodities. We then inoculated 100 µL of undiluted to 10-5 diluted water samples onto petriplate containing selective Thiosulphate Bile Salt Sucrose agar (TCBS). We characterised bacteria colonies based on the biochemical test for identification. Vibrio metschnikovii was the predominant bacteria species in abundance value from the rearing water of cultured lobster and sea cucumber. Meanwhile, Vibrio anguillarum was the most noticeable bacteria species in abundance from the rearing water of cultured abalone. These data provide information and facilitate the risk assessment of these pathogenic Vibrio species in aquaculture commodities.
Downloads
References
Abdelaziz, M., Ibrahem, M. D., Ibrahim, M. A., Abu-Elala, N. M., & Abdel-moneam, D. A. (2017). Monitoring of different Vibrio species affecting marine fishes in Lake Qarun and Gulf of Suez: Phenotypic and molecular characterisation. Egyptian Journal of Aquatic Research, 43(2), 141–146. https://doi.org/10.1016/j.ejar.2017.06.002
Akram, A., Stevens, R. P., & Konecny, P. (2015). Photobacterium damselae and Vibrio harveyi hand infection from marine exposure. The Medical Journal of Australia, 203(5), 224–225. https://doi.org/10.5694/mja15.00179
Azim, M.E. and Little, D. C. (2006). Intensifying aquaculture production through new approaches to manipulating natural food Environmental Monitoring and Impact Assessment for major developments (energy, mining, infrastructure) View project Effects of C/N controlled periphyton based organic f. CAB Reviews: Perspective in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1(062), 1–23. https://doi.org/10.1079/PAVSNNR20061062
Baker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martinez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4(1). https://doi.org/10.1038/s41572-018-0005-8
Bentzon-Tilia, M., Sonnenschein, E. C., & Gram, L. (2016). Monitoring and managing microbes in aquaculture - Towards a sustainable industry. Microbial Biotechnology, 9(5), 576–584. https://doi.org/10.1111/1751-7915.12392
Breed, R. S., Murray, E. G. D.Smith, N. R. (1957). Bergey's Manual of Determinative Bacteriology (Seventh Ed). Baltimore, USA: The Williams and Wilkins, (pp.356).
Brown, S. P., Cornforth, D. M., & Mideo, N. (2012, July 1). Evolution of virulence in opportunistic pathogens: Generalism, plasticity, and control. Trends in Microbiology, 20, 336–342. https://doi.org/10.1016/j.tim.2012.04.005
Cáceres-Martínez, J., Yeomans, R. V., & Cruz-Flores, R. (2019). Bacteriological water quality of recirculating aquatic systems for maintenance of yellowtail amberjack Seriola lalandi. Article in Journal of the World Aquaculture Society. https://doi.org/10.1111/jwas.12620
Cunningham, L. (2005). Assessing the contribution of aquaculture to food security: a survey of methodologies. FAO Fisheries Circular, 1010, 1–25.
Dalsgaard, A. (1998). The occurrence of human pathogenic Vibrio spp. and Salmonella in aquaculture. International Journal of Food Science and Technology, 33, 127–138.
Defoirdt, T. (2016). Implications of Ecological Niche Differentiation in Marine Bacteria for Microbial Management in Aquaculture to Prevent Bacterial Disease. PLOS Pathogens, 12(11), e1005843. https://doi.org/10.1371/journal.ppat.1005843
Flores, O., Belanche, L. A., & Blanch, A. R. (2009). New multiplatform computer program for numerical identification of microorganisms. Journal of Clinical Microbiology, 47(12), 4133–4135. https://doi.org/10.1128/JCM.01250-09
Frans, I., Michiels, C. W., Bossier, P., Willems, K. A., Lievens, B., & Rediers, H. (2011). Review Vibrio anguillarum as a fish pathogen : virulence factors, diagnosis and prevention. Journal of Fish Diseases, 34, 643–661. https://doi.org/10.1111/j.1365-2761.2011.01279.x
Ganesh, E. A., Das, S., Chandrasekar, K., Arun, G., & Balamurugan, S. (2010). Monitoring of Total Heterotrophic Bacteria and Vibrio Spp. in an Aquaculture Pond. Current Research Journal of Biological Sciences, 2(1), 48–52. Retrieved from https://www.researchgate.net/publication/267606862
Gao, F., Li, F., Tan, J., Yan, J., & Sun, H. (2014). Bacterial Community Composition in the Gut Content and Ambient Sediment of Sea Cucumber Apostichopus japonicus Revealed by 16S rRNA Gene Pyrosequencing. PLOS ONE, 9(6). https://doi.org/10.1371/journal.pone.0100092
Gao, X., Pi, D., Chen, N., Li, X., Liu, X., Yang, H., … Zhang, X. (2018). Survival, Virulent Characteristics, and Transcriptomic Analyses of the Pathogenic Vibrio anguillarum Under Starvation Stress. Frontiers in Cellular and Infection Microbiology, 8, 389. https://doi.org/10.3389/fcimb.2018.00389
Gupta, P., Samant, K., & Sahu, A. (2012). Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. International Journal of Microbiology. https://doi.org/10.1155/2012/578925
Hansen, W., Freney, ’ J, Benyagoub, H., Letouzey, M.-N., Gigi, J., & Wauters2, G. (1993). Severe Human Infections Caused by Vibrio metschnikovii. Journal of Clinical Microbiology, 31(9), 2529–2530. Retrieved from http://jcm.asm.org/
Hargreaves, J. A. (1998). Nitrogen biogeochemistry of aquaculture ponds. Aquaculture, 166, 181–212.
Hundenborn, J., Thurig, S., Kommerell, M., Haag, H., & Nolte, O. (2013). Severe Wound Infection with Photobacterium damselae ssp. Damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Reports in Medicine, 2013, 1-7. https://doi.org/10.1155/2013/610632
Igbinosa, I. H., Igumbor, E. U., Aghdasi, F., Tom, M., & Okoh, A. I. (2012). Emerging Aeromonas species infections and their significance in public health. The Scientific World Journal, 2012. 1-13. https://doi.org/10.1100/2012/625023
Janda, J. M., & Abbott, S. L. (2010, January 1). The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews, 23, 35–73. https://doi.org/10.1128/CMR.00039-09
Jellouli, K., Bougatef, A., Manni, L., Agrebi, R., Siala, R., Younes, I., & Nasri, M. (2009). Molecular and biochemical characterisation of an extracellular serine-protease from Vibrio metschnikovii J1. Journal of Industrial Microbiology and Biotechnology, 36(7), 939–948. https://doi.org/10.1007/s10295-009-0572-5
Jensen, J., & Jellinge, M. E. (2014). Severe septic shock and cardiac arrest in a patient with Vibrio metschnikovii: A case report. Journal of Medical Case Reports, 8(1), 348. https://doi.org/10.1186/1752-1947-8-348
Khalil, R. H., & Abd El-Latif, H. M. (2013). Effect of Vibrio Alginolyticus on Mugil Capito. Journal of the Arabian Aquaculture Society, 8(1), 193–204.
Larsen, M. H., Blackburn, N., Larsen, J. L., & Olsen, J. E. (2004). Influences of temperature, salinity and starvation on the motility and chemotactic response of Vibrio anguillarum. Microbiology, 150(5), 1283–1290. https://doi.org/10.1099/mic.0.26379-0
Latinoamericana de, R., Noriega-Orozco, L., Acedo-Félix, E., Higuera-Ciapara, I., Jiménez-Flores, R., Cano, R., & Guaymas, A. (2007). Pathogenic and non pathogenic Vibrio species in aquaculture shrimp ponds. Rev Latinoam Microbiol, 49(3–4), 60–67. Retrieved from www.medigraphic.com
Lee, S., Ferse, S., Ford, A., Wild, C., & Mangubhai, S. (2017). Effect of sea cucumber density on the health of reef-flat sediments In S. Mangubhai, W. Lalavanua and S.W. Purcell (eds.). Fiji's Sea Cucumber Fishery: Advances in Science for Improved Management, Report No. 01/17. Suva, Fiji .pp. 54-61.
Lehane, S. (2013). Fish for the Future: Aquaculture and Food Security. Future Directions International, August, 1–8.
Lekshmy, S., Mohandas, M., & Radhakrishnan, T. (2014). Monitoring of Vibrio parahaemolyticus in Aquaculture Ponds, Kerala, India. In International Journal of Science and Research. Retrieved from http://www.fda.gov/Food/ScienceResearch/LaboratoryMeth
Lin, J., Ju, B., Yao, Y., Lin, X., Xing, R., Teng, L., … Jiang jal, A. (2016). Microbial community in a multi-trophic aquaculture system of Apostichopus japonicus, Styela clava and microalgae. Aquacult Int, 24, 1119–1140. https://doi.org/10.1007/s10499-016-9975-2
Linde, H.-J., Kobuch, R., Jayasinghe, S., Reischl, U., Lehn, N., Kaulfuss, S., & Beutin, L. (2004). Vibrio metschnikovii, a Rare Cause of Wound Infection. Journal of Clinical Microbiology, 42(10), 4909–4911. https://doi.org/10.1128/JCM.42.10.4909-4911.2004
Linde, H. J., Kobuch, R., Jayasinghe, S., Reischl, U., Lehn, N., Kaulfuss, S., & Beutin, L. (2004). Vibrio metschnikovii, a rare cause of wound infection. Journal of Clinical Microbiology, 42(10), 4909–4911. https://doi.org/10.1128/JCM.42.10.4909-4911.2004
Mente, E., Pierce, G. J., Santos, M. B., & Neofitou, C. (2006). Effect of feed and feeding in the culture of salmonids on the marine aquatic environment: A synthesis for European aquaculture. Aquaculture International, 14(5), 499–522. https://doi.org/10.1007/s10499-006-9051-4
Miñana-Galbis, D., Farfán, M., Fusté, M. C., & Lorén, J. G. (2004). Aeromonas molluscorum sp. nov., isolated from bivalve molluscs. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2073–2078. https://doi.org/10.1099/ijs.0.63202-0
Naeem, S., & Li, S. (1998). Consumer species richness and autotrophic biomass. Ecology, 79(8), 2603–2615. https://doi.org/10.1890/0012-9658(1998)079[2603:CSRAAB]2.0.CO;2
Plotieau, T., Lavitra, T., Gillan, D. C., & Eeckhaut, I. (2013). Bacterial diversity of the sediments transiting through the gut of Holothuria scabra (Holothuroidea; Echinodermata). Marine Biology, 160, 3087–3101. https://doi.org/10.1007/s00227-013-2297-2
Purcell, S., Uthicke, S., & Byrne, M. (2016). Ecological Roles of Exploited Sea Cucumbers Impact of climate change on marine invertebrates View project Population ecology of freshwater mussels View project. Oceanography and Marine Biology: An Annual Review, 54, 367–386. https://doi.org/10.1201/9781315368597-8
Rimmer, M. A., Sugama, K., Rakhmawati, D., Rofiq, R., & Habgood, R. H. (2013). A review and SWOT analysis of aquaculture development in Indonesia. Reviews in Aquaculture, 5(4), 255–279. https://doi.org/10.1111/raq.12017
Rivas, A. J., Lemos, M. L., & Osorio, C. R. (2013). Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Frontiers in Microbiology, 4(SEP), 283. https://doi.org/10.3389/fmicb.2013.00283
Sawabe, T., Fujimura, Y., Niwa, K., & Aono, H. (2007). Vibrio comitans sp. nov., Vibrio rarus sp. nov. and Vibrio inusitatus sp. nov., from the gut of the abalones Haliotis discus discus, H. gigantea, H. madaka and H. rufescens. International Journal of Systematic and Evolutionary Microbiology, 57(5), 916–922. https://doi.org/10.1099/ijs.0.64789-0
Schwarz, W. H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, Vol. 56, pp. 634–649. https://doi.org/10.1007/s002530100710
Tey, Y. H., Jong, K. J., Fen, S. Y., & Wong, H. C. (2015). Occurrence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus in the aquacultural environments of Taiwan. Journal of Food Protection, 78(5), 969–976. https://doi.org/10.4315/0362-028X.JFP-14-405
Tomás, J. M. (2012). The Main Aeromonas Pathogenic Factors . ISRN Microbiology, 2012, 1–22. https://doi.org/10.5402/2012/256261
Wang, R., Zhong, Y., Gu, X., Yuan, J., Saeed, A. F., & Wang, S. (2015). The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Frontiers in Microbiology, 6(3), 1–13. https://doi.org/10.3389/fmicb.2015.00144
Wendling, C. C., Batista, F. M., & Wegner, K. M. (2014). Persistence, Seasonal Dynamics and Pathogenic Potential of Vibrio Communities from Pacific Oyster Hemolymph. PLoS ONE, 9(4), 94256. https://doi.org/10.1371/journal.pone.0094256
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Marine Research in Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.