Screening of anti-Candida albicans metabolites produced by marine sponge-associated bacteria
DOI:
https://doi.org/10.14203/mri.v45i2.575Keywords:
anti-CA, metabolites characterization, minimum inhibitory concentration, partial gene 16S rDNA, rep-PCRAbstract
This study selected bacteria with high anti-Candida albicans (CA) activity among ten bacteria isolated from marine sponges. Bacteria were cultivated using the basal medium to produce the extract. Minimum Inhibitory Concentration (MIC) microdilution broth was used as an anti-CA assay followed by TLC-direct bioautography to characterize their active compound with spray reagents. The bacteria determination was done by molecular approaches using Repetitive-Element Sequences-based-PCR (rep-PCR) and amplification of 16S rDNA partial gene sequences, continued with BLAST analysis. The four out of ten tested bacteria had high anti-CA compounds and were potentially to be produced on a larger scale using the basal medium, which was BYT5C4, BYT5C5, BYT1A, and BYT7, with MIC of 1 mg/mL against 7.5×106 CFU/mL CA. TLC-bioautography test results showed that all metabolites from each isolate had different Rf and types of metabolites. Rep-PCR test showed that four bacteria had a low similarity index, indicating that they were different species. Based on molecular identification results, the BYT5C4, BYT5C5, BYT1A, and BYT7 isolates are strictly related to Brevibacterium casei, Exiguobacterium profundum, Micrococcus lylae, and Bacillus firmus, respectively. The active metabolites identified in this study can be isolated to determine the active molecules and their inhibitory routes to fungal growth. It is worth noting that additional research might be conducted to compare the activity of each antifungal metabolite to the synergistic activity of numerous antifungal metabolites detected in plant extracts.
Downloads
References
Alexander, B.D & Perfect, J.R. (1997). Antifungal resistance trends toward the year 2000. Implications for therapy and new approaches. Drugs. Nov 54(5):657-78
Alimuddin, Asmara, W., Widada, J., Mustofa & Nurjasmi, R. (2010). An actinomycetes producing anti-candida isolated from Cajuput rhizosphere: partial identification of isolates and amplification of pks-I genes. Indonesian Journal of Biotechnology, 15: 1-8. doi: 10.22146/ijbiotech.7817
Center for Diseases Control and Prevention. 2018. Fungal Resistance. https://www.cdc.gov/fungal/antifungal-resistance.html. Accessed in 29 August 2019
Chomnawang, M.T., Surasso, S. Wongsariya, K. & Bunyapraphatsara N. (2009). Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia, 80:102-104. doi: 10.1016/j.fitote.2008.10.007
CLSI. (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard — Second Edition (NCCLS M27-A2). Pennsylvania https://clsi.org/media/1461/m27a3_sample.pdf
Collins, M. D., Farrow, J. A. E., Goodfellow, M., & Minnikin, D. E. (1983). Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov. Systematic and Applied Microbiology, 4(3), 388–395. doi:10.1016/s0723-2020(83)80023-x
Crapart, S., Fardeau. M.L., Cayol, J.L., Thomas, P., Sery, C., Ollivier, B. & Combet-Blanc, Y. (2007). Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 57: 287-92
Dewi, A.S., Tarman, K. &Uria, A.R. (2008). Marine Natural Products: Prospects and Impacts on the Sustainable Development in Indonesia. Proceeding of Indonesian Student’s Scientific Meeting. Delft, Netherlands. (May): 54-63
Dharmaraj, S., & Sumantha, A. (2009). Bioactive potential of Streptomyces associated with marine sponges. World Journal of Microbiology and Biotechnology, 25(11), 1971–1979. doi: 10.1007/s11274-009-0096-1
Faulkner, D.J. (2000). Marine pharmacology. Antonie van Leeuwenhoek, 77: 135-145
Gandhimathi, R., Arunkumar, M. Selvin, J. Thangavelu, T., Sivaramakrishnan, Kiran, G.S., Shanmughapriya, S. & Natarajaseenivasa, K. (2008). Antimicrobial potential of sponge associated marine actinomycetes. Journal de Mycologie Médicale / Journal of Medical Mycology, 18: 16-22. doi: 10.1016/j.mycmed.2007.11.001
Genersch, E. & Otten, C. (2003). The use of repetitive element PCR fingerprinting (rep-PCR) for genetic subtyping of German field isolates of Paenibacillus larvae subsp . larvae. Apidologie, 34: 195-206. doi: 10.1051/apido:2003025
Gerwick, W.H. & Moore, B.S. (2012). Lesson from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 2012 27 January;19(1):85-98. doi: 10.1016/j.chembiol.2011.12.014
Gillis, M., Vandamme, P., Vos, P.D., Swings, J. & Kersters. (2005). Polyphasic taxonomy, on Bergey’s Manual of Systematic Bacteriology: Second Edition, edited by D. J. Brenner, N. R. Krieg, & J. T. Staley. New York, USA. Springer: 43-48
Hentschel, U., Schmid, M., Wagner, M., Fieseler, L. & Gernert, C. (2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology, 35: 305-312. doi: 10.1111/j.1574-6941.2001.tb00816.x
Hiett, K.L. & Seal B.S. (2009). Use of repetitive element palindromic PCR (rep-PCR) for the epidemiologic discrimination of foodborne pathogens. Methods Mol Biol. 551: 49-58. doi: 10.1007/978-1-60327-999-4_5
Hooper, J.N.A. (2003). Sponguide. (internet) (diakses Agustus 2009)
Ishii, S. and Sadowsky, M.J. (2009). Applications of the rep-PCRDNA fingerprinting technique to study microbial diversity, ecology and evolution. Environmental Journal of Systematic and Evolutionary Microbiology. 54: 2107-2111.
Jacob, M.R. & Walker, L.A. (2005). Natural products and antifungal drug discovery, on Antifungal Agents Methods and Protocols, edited by E. J. Ernest & P. D. Roger. New Jersey, USA. Humana Press: 83-109
Kasana, R.C. & C.B. Pandey. (2018). Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol. 38(1):141-156. doi: 10.1080/07388551.2017.1312273
Kerr, J.R. (1999). Bacterial inhibition of fungal growth and pathogenicity. Microbial Ecology in Health and Disease, 11: 129-142
Kim, I.G., Lee, M.H., Jung, S.Y., Song, J.J., Oh, T.K. & Yoon, J.H. (2005). Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 55: 885-889
Kumar, V. A., Augustine, D., Panikar, D., Nandakumar, A., Dinesh, K. R., Karim, S., & Philip, R. (2011). Brevibacterium casei as a cause of brain abscess in an immunocompetent patient. Journal of Clinical Microbiology, 49: 4374-4376. doi: 10.1128/JCM.01086-11
Lee, Y.K., Lee, J.H. & Lee, H.K. (2001). Microbial symbiosis in marine sponges. The Journal of Microbiology, 39: 254-264. https://www.researchgate.net/publication/268411386_Microbial_Symbiosis_in_Marine_Sponges
Lemriss, S., Laurent, F., Couble, A., Casoli, E., Lancelin, J.M., Saintpierre-Bonaccio, D., Rifai, S., Fassouane, A. & Bioron, P. (2003). Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes. Canadian. Journal of Microbiology, 49: 669-674. doi: 10.1139/w03-088
Loni, P.P. & S.S. Bajekal. (2011). Alkaline Chitinase from Bacillus firmus SBPL-05 Isolated from Alkaline-Saline Environment of Lonar Lake. Indian Journal of Fundamental and Applied Life Sciences Vol. 1 (3) July-September, pp. 161-165 ISSN: 2231-6345 (Online)
Madigan, M.T., Martinko, J.M., Stahl, D.A., & Clark, D.P. (2011). Microbial evolution and diversity on Brock Biology of Microorganisms 13th Edition, edited by Espinoza, D. & Cook, K. Benjamin Cummings. San Francisco: 446-474
Martin, S.M., Kau, D.A. & Wrigley, S.K. (2006). Scale-up of natural product isolation, in Natural Products Isolation; Second Edition, Editor: S.D. Sarker, Z. Latif, & A.I. Gray. New Jersey, USA. Humana Press: 439- 461
Mohamadi, J, Motaghi, M., Panahi, J., Havasian, M.R., Delpisheh, A., Azizian, M. and Pakzad, I. (2014). Antifungal resistance in candida isolated from oral and diaper rash candidiasis in neonates. Bioinformation. 2014 Nov 27;10(11):667-70. doi: 10.6026/97320630010667
Murti, Y.B., Hertiani, T., Purwantini, I. (2010). Skrining Actinomisetes-simbion spons laut sebagai produsen senyaawa bioaktif dan infeksi. Kongres Ilmiah XVIII IAI. Makassar.
Nami, S., Aghebati-Maleki, A., Morovatia, H. & Aghebati-Maleki, L. (2019). Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomedicine & Pharmacotherapy. doi: 10.1016/j.biopha.2018.12.009
Pfaller, M.A., Bale, M., Bushelman, B., Lancaster, M., Espinel-Ingroff, A., Rex, J.H., Rinaldi, M.G., Cooper, C.R. & McGinnis, M.R. (1995). Quality control guidelines for National Committee for Clinical Laboratory Standards recommended broth macrodilution testing of amphotericin B, fluconazole, and flucytosine. Journal of Clinical Microbiology, 33: 1104-1107. https://www.ncbi.nlm.nih.gov/pubmed/7615713
Qian, P.Y., Dobretsov, S., Dahms, H.U. & Pawlik, J. (2006). Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas. Marine Ecology Progress Series, 324: 151-165
Rasoanaivo, P., Wright, C.W., Willcox, M.L. & Gilbert, B. (2011). Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria Journal, 10: S4. doi: 10.1186/1475-2875-10-S1-S4
Solntsev, K.M., Schramm, S., Kremb, S., Gunsalus, K.C.& Amin, S.A. (2019). Isolation of biological active compounds from mangrove sediments. Analytical and Bioanalytical Chemistry. 411:6521-6529. doi: 10.1007/s00216-019-02001-y
Tadesse, M. (2010). Antimicrobial natural products from Arctic and sub-Arctic marine invertebrates. Doctoral Thesis: University of Tromso. https://hdl.handle.net/10037/2702
Thakur, N.L. & Müller, W.E.G. (2004). Biotechnological potential of marine sponges. Current Science, 86: 1506-1512. https://www.researchgate.net/publication/228419976_Biotechnological_potential_of_marine_sponges
Titmarsh, S. (2018). Tackling the growing problem of antifungal resistance. https://www.prescriber.co.uk/article/tackling-the-growing-problem-of-antifungal-resistance. Accessed on 29 August 2019
Toroglu, S. (2011). In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of Environmental Biology, 32(1): 23-29. https://www.ncbi.nlm.nih.gov/pubmed/21888227
Ulrich-Merzenich, G., Panek, D., Zeitler, H., Vetter, H. & Wagner, H. (2010). Drug development from natural products: exploiting synergistic effects. Indian Journal of Experimental Biology, 48: 208-219. https://www.ncbi.nlm.nih.gov/pubmed/21046973
Valgas, C., de Souza, S.M., Smania, E.F.A. & Smania Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38(2): 369-380. doi: 10.1590/S1517-83822007000200034
Waksmundzka-Hajnos, M., Sherma, J. & Kowalska, T. (2008). Thin Layer Chromatography in Phytochemistry, Boca Raton: CRC Press
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Marine Research in Indonesia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.