Screening of anti-Candida albicans metabolites produced by marine sponge-associated bacteria


  • Pipin Kusumawati Biotechnology Graduate School, Gadjah Mada University, Yogyakarta, Indonesia
  • Yosi Bayu Murti Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia
  • Nastiti Wijayanti Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia



anti-CA, metabolites characterization, minimum inhibitory concentration, partial gene 16S rDNA, rep-PCR


This study selected bacteria with high anti-Candida albicans (CA) activity among ten bacteria isolated from marine sponges. Bacteria were cultivated using the basal medium to produce the extract. Minimum Inhibitory Concentration (MIC) microdilution broth was used as an anti-CA assay followed by TLC-direct bioautography to characterize their active compound with spray reagents. The bacteria determination was done by molecular approaches using Repetitive-Element Sequences-based-PCR (rep-PCR) and amplification of 16S rDNA partial gene sequences, continued with BLAST analysis. The four out of ten tested bacteria had high anti-CA compounds and were potentially to be produced on a larger scale using the basal medium, which was BYT5C4, BYT5C5, BYT1A, and BYT7, with MIC of 1 mg/mL against 7.5×106 CFU/mL CA. TLC-bioautography test results showed that all metabolites from each isolate had different Rf and types of metabolites. Rep-PCR test showed that four bacteria had a low similarity index, indicating that they were different species. Based on molecular identification results, the BYT5C4, BYT5C5, BYT1A, and BYT7 isolates are strictly related to Brevibacterium casei, Exiguobacterium profundum, Micrococcus lylae, and Bacillus firmus, respectively. The active metabolites identified in this study can be isolated to determine the active molecules and their inhibitory routes to fungal growth. It is worth noting that additional research might be conducted to compare the activity of each antifungal metabolite to the synergistic activity of numerous antifungal metabolites detected in plant extracts.


Download data is not yet available.

Author Biographies

Yosi Bayu Murti, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia

2Pharmacy Faculty (Gadjah Mada University. Yogyakarta, Indonesia)

Nastiti Wijayanti, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia

Biology Faculty (Gadjah Mada University. Yogyakarta, Indonesia)



Alexander, B.D & Perfect, J.R. (1997). Antifungal resistance trends toward the year 2000. Implications for therapy and new approaches. Drugs. Nov 54(5):657-78

Alimuddin, Asmara, W., Widada, J., Mustofa & Nurjasmi, R. (2010). An actinomycetes producing anti-candida isolated from Cajuput rhizosphere: partial identification of isolates and amplification of pks-I genes. Indonesian Journal of Biotechnology, 15: 1-8. doi: 10.22146/ijbiotech.7817

Center for Diseases Control and Prevention. 2018. Fungal Resistance. Accessed in 29 August 2019

Chomnawang, M.T., Surasso, S. Wongsariya, K. & Bunyapraphatsara N. (2009). Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia, 80:102-104. doi: 10.1016/j.fitote.2008.10.007

CLSI. (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard — Second Edition (NCCLS M27-A2). Pennsylvania

Collins, M. D., Farrow, J. A. E., Goodfellow, M., & Minnikin, D. E. (1983). Brevibacterium casei sp. nov. and Brevibacterium epidermidis sp. nov. Systematic and Applied Microbiology, 4(3), 388–395. doi:10.1016/s0723-2020(83)80023-x

Crapart, S., Fardeau. M.L., Cayol, J.L., Thomas, P., Sery, C., Ollivier, B. & Combet-Blanc, Y. (2007). Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 57: 287-92

Dewi, A.S., Tarman, K. &Uria, A.R. (2008). Marine Natural Products: Prospects and Impacts on the Sustainable Development in Indonesia. Proceeding of Indonesian Student’s Scientific Meeting. Delft, Netherlands. (May): 54-63

Dharmaraj, S., & Sumantha, A. (2009). Bioactive potential of Streptomyces associated with marine sponges. World Journal of Microbiology and Biotechnology, 25(11), 1971–1979. doi: 10.1007/s11274-009-0096-1

Faulkner, D.J. (2000). Marine pharmacology. Antonie van Leeuwenhoek, 77: 135-145

Gandhimathi, R., Arunkumar, M. Selvin, J. Thangavelu, T., Sivaramakrishnan, Kiran, G.S., Shanmughapriya, S. & Natarajaseenivasa, K. (2008). Antimicrobial potential of sponge associated marine actinomycetes. Journal de Mycologie Médicale / Journal of Medical Mycology, 18: 16-22. doi: 10.1016/j.mycmed.2007.11.001

Genersch, E. & Otten, C. (2003). The use of repetitive element PCR fingerprinting (rep-PCR) for genetic subtyping of German field isolates of Paenibacillus larvae subsp . larvae. Apidologie, 34: 195-206. doi: 10.1051/apido:2003025

Gerwick, W.H. & Moore, B.S. (2012). Lesson from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 2012 27 January;19(1):85-98. doi: 10.1016/j.chembiol.2011.12.014

Gillis, M., Vandamme, P., Vos, P.D., Swings, J. & Kersters. (2005). Polyphasic taxonomy, on Bergey’s Manual of Systematic Bacteriology: Second Edition, edited by D. J. Brenner, N. R. Krieg, & J. T. Staley. New York, USA. Springer: 43-48

Hentschel, U., Schmid, M., Wagner, M., Fieseler, L. & Gernert, C. (2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology, 35: 305-312. doi: 10.1111/j.1574-6941.2001.tb00816.x

Hiett, K.L. & Seal B.S. (2009). Use of repetitive element palindromic PCR (rep-PCR) for the epidemiologic discrimination of foodborne pathogens. Methods Mol Biol. 551: 49-58. doi: 10.1007/978-1-60327-999-4_5

Hooper, J.N.A. (2003). Sponguide. (internet) (diakses Agustus 2009)

Ishii, S. and Sadowsky, M.J. (2009). Applications of the rep-PCRDNA fingerprinting technique to study microbial diversity, ecology and evolution. Environmental Journal of Systematic and Evolutionary Microbiology. 54: 2107-2111.

Jacob, M.R. & Walker, L.A. (2005). Natural products and antifungal drug discovery, on Antifungal Agents Methods and Protocols, edited by E. J. Ernest & P. D. Roger. New Jersey, USA. Humana Press: 83-109

Kasana, R.C. & C.B. Pandey. (2018). Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol. 38(1):141-156. doi: 10.1080/07388551.2017.1312273

Kerr, J.R. (1999). Bacterial inhibition of fungal growth and pathogenicity. Microbial Ecology in Health and Disease, 11: 129-142

Kim, I.G., Lee, M.H., Jung, S.Y., Song, J.J., Oh, T.K. & Yoon, J.H. (2005). Exiguobacterium aestuarii sp. nov. and Exiguobacterium marinum sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 55: 885-889

Kumar, V. A., Augustine, D., Panikar, D., Nandakumar, A., Dinesh, K. R., Karim, S., & Philip, R. (2011). Brevibacterium casei as a cause of brain abscess in an immunocompetent patient. Journal of Clinical Microbiology, 49: 4374-4376. doi: 10.1128/JCM.01086-11

Lee, Y.K., Lee, J.H. & Lee, H.K. (2001). Microbial symbiosis in marine sponges. The Journal of Microbiology, 39: 254-264.

Lemriss, S., Laurent, F., Couble, A., Casoli, E., Lancelin, J.M., Saintpierre-Bonaccio, D., Rifai, S., Fassouane, A. & Bioron, P. (2003). Screening of nonpolyenic antifungal metabolites produced by clinical isolates of actinomycetes. Canadian. Journal of Microbiology, 49: 669-674. doi: 10.1139/w03-088

Loni, P.P. & S.S. Bajekal. (2011). Alkaline Chitinase from Bacillus firmus SBPL-05 Isolated from Alkaline-Saline Environment of Lonar Lake. Indian Journal of Fundamental and Applied Life Sciences Vol. 1 (3) July-September, pp. 161-165 ISSN: 2231-6345 (Online)

Madigan, M.T., Martinko, J.M., Stahl, D.A., & Clark, D.P. (2011). Microbial evolution and diversity on Brock Biology of Microorganisms 13th Edition, edited by Espinoza, D. & Cook, K. Benjamin Cummings. San Francisco: 446-474

Martin, S.M., Kau, D.A. & Wrigley, S.K. (2006). Scale-up of natural product isolation, in Natural Products Isolation; Second Edition, Editor: S.D. Sarker, Z. Latif, & A.I. Gray. New Jersey, USA. Humana Press: 439- 461

Mohamadi, J, Motaghi, M., Panahi, J., Havasian, M.R., Delpisheh, A., Azizian, M. and Pakzad, I. (2014). Antifungal resistance in candida isolated from oral and diaper rash candidiasis in neonates. Bioinformation. 2014 Nov 27;10(11):667-70. doi: 10.6026/97320630010667

Murti, Y.B., Hertiani, T., Purwantini, I. (2010). Skrining Actinomisetes-simbion spons laut sebagai produsen senyaawa bioaktif dan infeksi. Kongres Ilmiah XVIII IAI. Makassar.

Nami, S., Aghebati-Maleki, A., Morovatia, H. & Aghebati-Maleki, L. (2019). Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomedicine & Pharmacotherapy. doi: 10.1016/j.biopha.2018.12.009

Pfaller, M.A., Bale, M., Bushelman, B., Lancaster, M., Espinel-Ingroff, A., Rex, J.H., Rinaldi, M.G., Cooper, C.R. & McGinnis, M.R. (1995). Quality control guidelines for National Committee for Clinical Laboratory Standards recommended broth macrodilution testing of amphotericin B, fluconazole, and flucytosine. Journal of Clinical Microbiology, 33: 1104-1107.

Qian, P.Y., Dobretsov, S., Dahms, H.U. & Pawlik, J. (2006). Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas. Marine Ecology Progress Series, 324: 151-165

Rasoanaivo, P., Wright, C.W., Willcox, M.L. & Gilbert, B. (2011). Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria Journal, 10: S4. doi: 10.1186/1475-2875-10-S1-S4

Solntsev, K.M., Schramm, S., Kremb, S., Gunsalus, K.C.& Amin, S.A. (2019). Isolation of biological active compounds from mangrove sediments. Analytical and Bioanalytical Chemistry. 411:6521-6529. doi: 10.1007/s00216-019-02001-y

Tadesse, M. (2010). Antimicrobial natural products from Arctic and sub-Arctic marine invertebrates. Doctoral Thesis: University of Tromso.

Thakur, N.L. & Müller, W.E.G. (2004). Biotechnological potential of marine sponges. Current Science, 86: 1506-1512.

Titmarsh, S. (2018). Tackling the growing problem of antifungal resistance. Accessed on 29 August 2019

Toroglu, S. (2011). In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of Environmental Biology, 32(1): 23-29.

Ulrich-Merzenich, G., Panek, D., Zeitler, H., Vetter, H. & Wagner, H. (2010). Drug development from natural products: exploiting synergistic effects. Indian Journal of Experimental Biology, 48: 208-219.

Valgas, C., de Souza, S.M., Smania, E.F.A. & Smania Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38(2): 369-380. doi: 10.1590/S1517-83822007000200034

Waksmundzka-Hajnos, M., Sherma, J. & Kowalska, T. (2008). Thin Layer Chromatography in Phytochemistry, Boca Raton: CRC Press




How to Cite

Kusumawati, P., Murti, Y. B., & Wijayanti, N. (2020). Screening of anti-Candida albicans metabolites produced by marine sponge-associated bacteria. Marine Research in Indonesia, 45(2), 47–58.



Original Research Articles