• Tia Nuraya Faculty of Fisheries and Marine Sciences, Bogor Agricultural University (IPB). Bogor, Indonesia.
  • Alan Frendy Koropitan Faculty of Fisheries and Marine Sciences, Bogor Agricultural University (IPB). Bogor, Indonesia.
  • A'an Johan Wahyudi Research Center for Oceanography, Indonesian Institute of Sciences (LIPI). Jakarta, Indonesia.



mangrove ecosystem, organic carbon, riverine input, West Kalimantan, Indonesia


We investigate variation in sediment carbon stock at Mempawah and Bakau Besar in West Kalimantan by analyzing organic carbon content from sediment samples taken within 20 cm depth. Our results show that organic carbon stock of sediments in Bakau Besar is generally higher than in Mempawah that may be due to riverine input of organic carbon into the mangrove forests. The riverine input of organic carbon is influenced tides, in which we find that organic carbon loads are higher during high tide compared to low tide. In particular, we find high organic carbon contents at a station in Mempawah (Station 3; 6.46 ± 0.23 tons C/ha) and another station in Bakau Besar (Station 2; 14.93 ± 1.43 tons C/ha). These two stations have mangrove density of 13,519 individuals/ha and 9,928 individuals/ha, respectively. We conclude that high organic carbon is influenced by riverine input as well as a high density of mangrove and the dominant type of mangrove vegetation at the sites.


Download data is not yet available.


Afiati, R. N., Rustam, A., Kepel, T. L., Sudirman, N., Astrid, M., Daulat, A., Mangindaan, P., Salim, H. L., and Hutahaean, A. A. (2014). Carbon stock and mangrove community structure as blue carbon in Tanjung Lesung, Banten. Segara, 2(2), 119-127.

Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carb. Manag., 3(3), 313322. doi:10.1007/978-1-4020-8343-3_17.

Banerjee, K., Bal, G., and Mitra, A. (2018). How soil texture affects the organic carbon load in the mangrove ecosystem? A case study from Bhitarkanika, Odisha. Environ. Poll., 329341. doi:10.1007/978-981-10-5792-2_27.

Banse, K., Falls C. P., and Hobson, L. A. (1963). A gravimetric method for determining suspended matter in seawater using millipore filter. Deep sea. Res., 10, 639-642. doi:10.1016/00117471(63)90005-6.

Burchard, H., Schuttelaars H. M., and Ralston, D. K. (2018). Sediment trapping in estuaries. Ann. Rev. Mar. Sci., 3, 10, 371-395. doi:10.1146/ annurev-marine-010816-060535.

Chen, G., Gao, M., Pang, B., Chen, S., and Ye, Y. (2018). Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Forest Ecol. Manag., 422, 8794. doi:10.1016/j.foreco.2018.03.044.

Etemadi, H., Smoak, J. M., and Sanders, C. J. (2018). Forest migration and carbon sources to Iranian mangrove soils. J. Arid Environ., 157, 57-65. doi:10.1016/j.jaridenv.2018.06.005.

Figueres, C., Schellnhuber, H. J., Whiteman, G., Rockström, J., Hobley A., and Rahmstorf, S. (2017). Three years to safeguard our climate. Nature, 546, 593-595. doi:10. 1038/546593a.

George, D. A., Largier, J. L., Storlazzi, C. D., Robart, M. J., and Gaylord, B. (2018). Currents, waves and sediment transport around the headland of Pt. Dume, California. Cont. Shelf Res.., 17, 1-54. doi:10.1016/j. csr.2018.10.011.

Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh., A., Loveland, T., Masek, T., and Duke, T. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global. Eco. Biogeogr., 20, 154159. doi:10.1111/j.1466-8238.2010.00584.x.

Helrich, K. (1990). Method of analysis of the association of official analytical chemist. Virginia: Arlington County, (pp. 15).

Hien, H. T., Marchand, C., Aimé, J., and Cuc, N. T. K. (2018). Seasonal variability of CO2 emissions from sediments in planted mangroves (Northern Viet Nam). Estuar. Coast. Shelf Sci., 213, 28-39. doi:10.1016/j.ecss.2018.08.006.

Hofmann, D. J., Butler, J. H., and Tans, P. P. (2009). A new look at atmospheric carbon dioxide. Atmos. Environ., 43, 2084-2086. doi:10.1016/j.atmosenv.2008.12.028.

Kauffman, J. B., and Donato, D. C. (2012). Protocols for the measurenments, monitoring, and reporting of structure, biomass and carbon stock in mangrove forests. Bogor, Indonesia: Center for International Forestry Research (CIFOR), CIFOR Working Paper no. 86. (pp 40). doi:10.17528/cifor/003749.

Kristensen, E., and Andersen, F. Ø. (1987). Determination of organic carbon in marine sediments: A comparison of two CHN-analyzer methods. J. Exp. Mar. Biol. Ecol.., 109(1), 1523. doi:10.1016/0022-0981(87)90182-1.

Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot., 89(2), 201-219. doi:10.1016/j. aquabot.2007.12.005.

Lovelock, C. E., Ruess, R. W., and Feller, I. C. (2011). CO2 Efflux from cleared mangrove peat. PLoS ONE., 6(6). doi:10.1371/journal. pone.0021279.

Marchand, C., (2017). Soil carbon stocks and burial rates along a mangrove forest chronosequence (French Guiana). Forest Ecol. Manage., 384, 92–99. doi:10.1016/j. foreco.2016.10.030.

Meyers, A. P. (2003). Application of organic geochemistry to paleolimnological reconstruction: A summary of examples from the Laurentian Great Lakes. Org. Geochem., 34, 261-289. doi:10.1016/S01466380(02)00168-7.

McIntyre, A.D., and Holme, N.A. (1984). Methods for the study of marine benthos. London: Blackwell Scientific Publication, (pp. 387).

Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R. (2010). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ., 45, 67-73. doi:10.1890/ 110004.

Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., and Kurnianto, S. (2015). The potential of Indonesia mangrove forest of global climate change mitigation. Nat. Geosci., doi: 10.1038/ NCLIMATE2734.

Nehren, U., and Wicaksono, P. (2018). Mapping soil carbon stocks in an oceanic mangrove ecosystem in Karimunjawa Islands, Indonesia. Estuar. Coast. Shelf Sci., 214, 1185-193, doi:10.1016/j.ecss.2018.09.022.

Osland, M. J., Spivak, A. C., Nestlerode, J. A., Lessmann, J. M., Almario, A. E., Heitmuller, P. T., Russell, M. J., Krauss, K. W., Alvarez, F., Dantin, D. D., and Harvey, J. E., From, A. S., Cormier, N., and Stagg, C. L. (2012). Ecosystem development after mangrove wetland creation: Plant–soil change across a 20-year chronosequence. Ecosystems., 15, 848-866. doi:10.1007/s10021-012-9551-1.

Poeplau, C., Vos, C., and Don, A. (2017). Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. SOIL., 3(1), 61-66. doi:10.5194/soil-3-61-2017.

Rahman, Hefni, E. H., and Rusmana, I. (2017). Stock estimation and carbon absorption of mangrove in Tallo River, Makassar. J. Forest Sci., 2, 19-28. doi:10.22146/jik.24867.

Ren, H., Chen, H., Li, Z., and Han, W. (2010). Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant Soil., 327, 279-291. doi:10.1007/s11104-009-00537.

Retnowati, E. (1998). The contribution of Eucalyptus Grandis maiden plantation forest as rosot karbon in North Tapanuli. Bogor. Forest Research Bulletin. (pp. 611).

Rozainah, M. Z., Nazri, M. N., Sofawi, A. B., Hemati, Z., and Juliana, W. A. (2018). Estimation of carbon pool in soil, above and below ground vegetation at different types of mangrove forests in Peninsular Malaysia. Mar. Poll. Bull., 137, 237-245. doi:10.1016/j. marpolbul.2018.10.02.

Strickland, J. D. H and Parson, T. R. (1968). A practical handbook of seawater analysis. Fish. Res. Board Canada, Bull. (pp. 167-311).

Tue, N. T., Nguyen, T. N., Tran, D. Q., Hamaoka, H., Mai, T. N., and Omori, K. (2012). A cross system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam. J. Sea Res., 67 (1), 69-76. 10.1016/j.seares.2011.10.006.

Twilley, R. R., Chen, R. H., and Hargis, T. (1992). Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air. Soil. Poll., 64(1-2), 265-288. doi:10.1007/bf00477106.

Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X., Li, W., and Huang, Y. (2012). Black carbon emissions in China from 1949 to 2050. Environ. Sci. Technol., 46, 7595–7603. doi:10.1021/es3003684.

Woodroffe, C. (1992). Mangrove sediments and geomorphology. Coast. Estuar. Studies, 7-41. doi:10.1029/ce041p0007.

Xue, B., Yan, C., Lu, H. and Bai, Y. (2009). Mangrove-derived organic carbon in sediment from Zhangjiang Estuary (China) mangrove wetland. J. Coastal Res., 25, 949-956. doi: 10.2112/08-1047.1.




How to Cite

Nuraya, T., Koropitan, A. F., & Wahyudi, A. J. (2019). SEDIMENT CARBON STOCK OF WEST KALIMANTAN MANGROVE FORESTS. Marine Research in Indonesia, 44(1), 27–35.



Original Research Articles

Most read articles by the same author(s)